
Automatic level generation for platform
videogames using Genetic Algorithms

Fausto Mourato

Dep. Sistemas e Informática
Escola Superior de Tecnologia
Instituto Politécnico de Setúbal
2910-761 Setúbal – Portugal

+351 265 790 000

fmourato@est.ips.pt

Manuel Próspero dos Santos

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica – Portugal

+351 212 948 536

ps@di.fct.unl.pt

Fernando Birra

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica – Portugal

+351 212 948 536

fpb@di.fct.unl.pt

ABSTRACT

In this document we present an investigation on automatically

generating levels for platform videogames. Common approaches

for this problem are rhythm based, where input patterns are

transformed in a valid geometry, and chunk based, where samples

are humanly created and automatically assembled like a puzzle.

The proposal hereby presented is to explore this challenge with

the usage of Genetic Algorithms, facing it as a search problem, in

order to achieve higher expressivity and less linearity than in

rhythm based approach and without requiring human creation as it

happens with the chunk based approach. With simple heuristics

the system is able to generate playable levels in a small amount of

time (one level is created in less than a minute) and with

considerable diversity, as our results show.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Geometric Algorithms, Languages,

and Systems, I.3.6 [Computer Graphics]: Interaction

Techniques.

General Terms

Algorithms, Design, Experimentation, Human Factors.

Keywords

Platform Videogames, Procedural Content Generation, Automated

Game Design.

1. INTRODUCTION
The automatic generation of content is an area of interest for

scientists from different domains in Computer Science, such as

Computer Graphics, Artificial Intelligence, Human-Computer

Interaction, among others. In this paper we direct our focus to the

automated generation of content for platform videogames. In

particular, our goal is to have a system that is able to

automatically generate levels for this type of games.

Platform games, such as Super Mario Bros. and Sonic – the

Hedgehog, represent one particular genre of gaming where the

user controls a character and guides him through a scenario,

performing jumps over gaps and confronting opponents, typically

in a bi-dimensional environment. This type of games was

particular popular in the 1980’s. However, and maybe due to the

excessive complexity of contemporary games, platformers are

starting to appear once again in recent videogame releases, either

as remakes with improved graphics or as new ideas taking

advantage of contemporary technology such as the wide spread of

the Internet. For instance, Nintendo released New Super Mario

Bros Wii in 2009 and Sega released Sonic 4 in 2010. In addition,

the videogame Little Big Planet is a good example of a modern

platformer.

In this article we focus the problem of automatically generating

levels for this type of games, with a different approach from those

that have been used up to the present time. As we will further see

in Section 2 of this document, where related work is presented,

some alternatives have been considered for this purpose, such as

rhythm and chunk based. We present the possibility of

approaching this challenge as a search problem, tackling it with

the usage of Genetic Algorithms. The main contribution of this

project is the approach by itself inside this context, which is new

and promissory. Associated to that, we also bring the definition of

heuristics to measure the quality of a level based on the

geometrical content and interaction parameters. Finally, the

implemented prototype provides a proof of feasibility of this

approach.

Automatically generating this type of game spaces is an

interesting challenge, in particular because it appears to be a

simple task, although, it raises several issues and non-trivial

aspects to be addressed. Though in its main principles it can be

perceived as generating a generic geometry, such as what happens

when a system procedurally generates a tree or a building, for

instance, one has to take into account that the final geometry has

to represent a challenge, associated to a certain degree of

difficulty. Also, this type of geometric content is semantically

sensitive, since a slight change in a small component may

invalidate the whole content. For instance, a minor random

change in a valid level can be enough to make it impossible to

complete.

Procedural Content Generation can be used in different ways. For

small companies and independent developers, this may represent a

solution for the time consuming task of producing game content.

More generally, the main potential is in the possibility of creating

an uncountable set of levels, which solves the problem of level

predictability. For instance, it becomes impossible to go online for

the level solution and/or secret locations. Finally, this approach

creates room for designers to conceive new mechanics that adapt

gameplay to fit competitiveness in ever-changing scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Short presentation, ACE'2011- Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11…$10.00.

For the purpose of this project, the main inspiration can be found

in a classical platform videogame released in 1989, entitled Prince

of Persia (screenshot provided in Figure 1). This game became a

franchise with several associated releases in the last decade with

contemporary graphical realism and gameplay, out of the initial

platform based approach. Regarding the original game, levels

typically consist of dungeons with corridors, filled with traps and

gaps. Also, the character occasionally encounters and confronts

enemies. In this particular game, movement challenges such as

jumping through gaps and enemy confrontations are kept separate,

meaning that the player will not be simultaneously moving and

fighting. In Section 3 of this document we will go into the details

about the generation process and we will explain the main reason

of having Prince of Persia as the main inspiration. Nevertheless, it

is important to state that the technique is not restricted to this

particular game only. We believe that some of the ideas that will

be presented can be generalized and used in other platform

videogames.

Figure 1 – Screenshot of the videogame Prince of Persia

Even though this work has some aspects in a preliminary stage,

our results are promissory as we will see in Section 4. This

approach generates several distinct valid levels. A fast generation

process of not more than a few seconds provides, with almost

100% certainty, a valid level with a couple of minutes of

gameplay. Rising the computation times to one or two minutes

allow to perfect the generation process with particular good detail.

2. RELATED WORK
Procedurally generating game spaces is a topic that informally

appeared, in a videogame entitled Rogue, back in 1980. The game

was ASCII based and its geometry was defined recurring to

simple characters. The idea behind the procedural generation was

simple: rooms were generated with random positions and sizes

and were interconnected by corridors also randomly created.

Despite the popularity this game achieved - Version 4.2 of BSD

UNIX included Rogue – the approach behind it got unnoticed.

Interestingly, this topic became popular in recent times, as a way

to improve “replayability” in games. Regarding independent game

development, two recent titles are worth mentioning: Minecraft

and Spelunky. Both have game environments that are procedurally

generated. In the scientific community, this topic has also been

approached as we will further see.

Generating graphical entities, such as buildings, is a problem that

has been actively approached. As an example, Lipp [6] uses

L-Systems as an efficient way to automatically generate buildings

with the possibility of small scale control. Considering nature, the

examples are numerous, and mature cases can be found back in

Mandelbrot and Hudson’s ideas to generate terrain procedurally,

for instance, the mid-point displacement technique [7]. However,

ideas such as these are recent in the generation of game spaces.

The interest behind the topic of automating the generation of

levels for platform games was pioneered by Compton and Mateas

[1]. They proposed some principles that could be used to interpret

and describe platform levels, suitable for an automatic generation

system. Concerning to movement, authors have defined a model

with different possible patterns: basic, complex, compound and

composite. These patterns represent the organization of a level in

components, which are the platforms and other graphical entities

that compose a level. They have also presented some ideas about

the need of having a physics model to perceive possible

trajectories to identify difficulty, but only as a theoretical need

without effective concretization.

Later, Smith et al. [12] presented a more extensive analysis to the

existing components of a platform level, with the creation of a

conceptual model that defines associations and a hierarchy for the

different entities. The used principles follow some of the thoughts

proposed in the Game Ontology Project (GOP) by Zegal et al.

[18], where a more generic model was proposed. The defined

hierarchy by Smith et al. represents an interesting approach to the

problem and largely covers the concepts.

The previous work led to the creation of a system that effectively

generates levels for platform games [13]. This system was later

named Launchpad. The main idea is that the generation of level

segments can be based in input patterns that the player needs to

match. Therefore, when the player is performing well, the

sequence of actions flows naturally, like playing a melody in a

piano, following the principle of Flow proposed by

Csikszentmihalyi [2], which represents the ideal state of

immersion and control over a certain skill based task. We can

consider this type of level generation as the rhythm based

approach.

In order to evaluate the expressive range of the previous work, the

same authors proposed a method to analyse the generated content

[14]. One important aspect that should be retained is that it is not

only important to examine the number of different levels that are

generated and the time needed for their creation, but also to

extract how different and varied the results are. Authors analysed

the output regarding linearity of the path and the relative difficulty

measurement.

Still taking into account the concept of expressivity, the more

natural way to expand it and add creativity is to include a user or a

set of users tweaking the output or the process of production. This

approach is referred as a mixed-initiative, which means that the

final result is obtained after a cooperative effort of humans and

machines. Smith et al. [15] presented a prototype system for this

purpose using constraint programming.

Finally, Mawhorter and Mateas [8] presented a different approach

to level generation. They introduced Occupancy Regulated

Extension (ORE), an algorithm to create a game space based on

the composition of pre-authored chunks. One of the main

inspirations behind this work is the previously referred game

Spelunky. This different idea can be seen as chunk based

approach.

Our proposal is an alternative to the generation process, with a

novel approach based on Genetic Algorithms, a class of

Evolutionary Computation techniques that mimics real life

evolution. It is based on natural selection and is commonly used in

search problems with exponential growth that leads to the

impossibility of testing all potential solutions. To a more in-deep

study about Genetic Algorithms we point to Holland [4] and

Goldberg’s [3] books. The usage of these principles in Computer

Graphics and Interaction is not new, and has served various

purposes. For instance, to point a few, they have been used for the

reconstruction of missing parts of a real geometric object

represented by volume data, as proposed by Savchenko and

Schmitt [11], and to tune the parameters of an existing triangle

stripping algorithm, as proposed by Lord and Brown [5].

However, Genetic Algorithms have not been used as a tool for

game content generation in the way we propose, in particular a

game level that presents an associate challenge rather than a

simple physically valid environment.

The most similar approaches to what we propose and that have

been considered to generate game content can be found compiled

in Togelius et al. study on Search-based Procedural Content

Generation [16]. This article presents a good overview about

possible alternatives and important considerations in the topic that

were particularly relevant in the definition of our system. In

addition, the authors refer two other interesting works to be

considered in the scope of this document.

The first work shows one possible usage for Genetic Algorithms

in the context of Game Content Generation, proposed by Togelius

and Schmidhuber [17]. The authors presented a system that

evolves rule sets for Pacman-like games, converging to alternative

game variants.

The second example, proposed by Padersen et al. [10] shows a

level generation for platform videogames. A simple and linear

game is constructed randomly based on a small set of parameters,

such as the average gap size. This simple construction process

was used in a system where the main goal is to predict user

emotional state based on the referred parameters. That prediction

is accomplished with the usage of neural networks based on the

user profile.

Next, in Section 3, we will present our approach and justify our

option of testing Genetic Algorithms as a possible way to generate

the level, particularly in comparison with other techniques for

search problems.

3. APPROACH

3.1 Main principles and motivation

As previously referred, the generation process was created

focusing, in particular, the videogame Prince of Persia. However,

we believe that, with proper changes, a similar approach can be

used for a generic platform game. The most significant aspect that

guided that inspiration is that this game, like many others, has

areas represented in a grid. Essentially, each level is composed by

cells, grouped in screens of 10 by 3 cells, as it is possible to see in

the screenshot provided in Figure 2, where cells have been

delimited.

This structure based on cells allows us to think about two main

aspects. First, it is theoretically possible to generate all

conceivable levels for this game by generating all possible

combination of cells. Secondly, it is plausible to construct a

system that can test a generated level regarding movement (and

possibly some more aspects) and reasonably perceive its quality.

Consequently, the main issue is that, in practice, it is not possible

to test all conceivable levels. A simple screen where, to make it

simple, cells have only three possibilities (empty, wall block and

simple floor, as show in the images of Figure 3) consists of 310*3

combinations and, as a matter of fact, one single screen is not

much of a level. With this in mind, a stochastic solution appears to

be plausible as a way to tackle the problem. In one hand, it would

provide different results in different runs and, in the other hand, it

provides an adequate sampling on all possible solutions without

testing them all. Inside stochastic algorithms and techniques, the

usage of Genetic Algorithms appeared as an interesting solution

because this is a case where it is not trivial to define an operator to

explore alternative solutions. There is no direct perceptible

relationship among levels to be represented in a tree as it is

complex to define a set of successors for a particular level. Also,

the previously referred cell based representation for levels can be

mapped with some ease in a structure that can be used with

genetic operators, as we will see next.

Figure 2 – Prince of Persia – Division in Grid

Figure 3 – Three simple blocks that allow the

construction of one simple valid level

3.2 Genetic Algorithms overview

As stated before, Genetic Algorithms mimic real life evolution, in

particular based on Darwin’s theory of Natural Selection. In short

terms, this theory states that living beings that fit best their

environment are more willing to survive and reproduce.

Consequently, their features are reinforced in future generations.

Features change over time due to natural mutations and mutual

heritance.

In a Genetic Algorithm, one represents Individuals, coded with

certain data (genotype) that will manifest some effective features

(phenotype), in the same way it happens in nature. To represent

evolution, the system has to be able to perceive the inherent

quality of each individual. Genetic Algorithms simulate the

process of evolution by sorting a set of individuals (a generation)

and making the most scored more whiling to continue to the next

generation. For this purpose, a Fitness Function is defined to

evaluate an individual with a certain score. In addition, after a

new generation is defined, according to some probability

parameters, mutations are applied and some individuals are

combined among themselves.

In the next sub-sections we present a possible level representation,

a corresponding fitness function and crossover and mutation

operators.

3.3 Level Representation

In this system, an Individual is one possible level representation.

For this, we adopted a direct genotype/phenotype mapping, which

means that coded information represents features directly.

Effectively, the implemented genotype represents the whole grid,

cell by cell, in a bi-dimensional array. Also, the genotype has

explicit representations for the starting and ending cell of the

level. The main advantages of this mapping are locality, because it

will be possible to perform small changes in a level, and

representability, as all solutions have a matching representation.

The main disadvantage that can be pointed is that this is the most

expensive mapping alternative in what concerns to storage.

However, considering the original game and spending one byte

for each cell, even a large level is still representable with a few

kilobytes, which surely does not represent an issue.

3.4 Fitness Function

To calculate the fitness value for each level, we established a set

of heuristics to represent what a possible human evaluation would

ponder. The main considered aspects were the following:

 Path Structure. The level has to represent a good and

immersive path. In particular, it is important to have

alternative routes to avoid excessive path linearity,

which could result in single closed corridors. Also, it is

important to prevent excessive path branching, resulting

in a complex maze. To accomplish this, a set of possible

moves is defined and access to all cells is calculated,

such as moving to adjacent floor cell or jumping

through a gap with no more than four cells, among

others. In addition, a graph is created, thus it is possible

to perceive the cost (i.e. the number of movements

needed) to reach any cell from the starting position. This

gives a brief perception about the level difficulty. To

achieve a more detailed evaluation one needs a more

complex alternative. In a previous work [9], we

proposed a framework to measure difficulty based on

level structure and gap features, which can be an

alternative for this purpose. The main issue that this

may cause is an increase of complexity for the fitness

function, which will result in higher computation times

to produce one valid level.

 Individual cells analysis. Each cell has a particular

meaning and is analyzed individually. The system

defines good and bad cells as they make sense or not in

the level. A wall cell is always valid. A floor cell is only

valid if it is part of any of the possible paths. Finally, an

empty cell can be valid if it is used as path (for instance,

to create a gap to jump over) or if it has aesthetic

purposes. For the last, we defined that an empty cell has

aesthetic purpose if it has a valid empty cell in the

neighborhood. This specific aspect allows the system to

construct levels with open rooms instead of only closed

corridors.

 Ending. The placement of the level ending cell has to

assure, at first, that the level is valid and, secondly, that

an interesting challenge was created, consisting on an

acceptable cost (i.e. a high percentage of the maximum

identified cost). Starting position was not considered

because it already has implications on path structure.

 Aesthetic balance. To keep the generation with some

visual balance, the usage of each particular block should

be similar, meaning that the number of used blocks of

each type should be about the same. As we stated on

individual cell analysis, a wall block is always valid, so

this balance forces the evolution process to avoid an

excessive use of this type of blocks.

 Level usage. The level is supposed to take good use of

the provided space, by the means that the full path

length should be proportional to the number of cells.

This specific aspect reinforces the aesthetic balance, as

it favors the definition of long paths, strengthens the

definition of a good ending point and supports low

branched paths.

These heuristics were applied independently from each other to

extract a specific score. To keep control over the range of values,

every obtained score is set between zero and one. The extracted

individual scores are weighted according to a set of parameters to

generate the final fitness value, also normalized to a value

between zero and one.

3.5 Genetic Operators

As stated, genetic operators typically consist on mutation and

crossover. This sub-section covers the basis of their

implementation in our system.

3.5.1 Mutation

Mutation occurs with a certain probability and can be applied in

many forms. It is important that mutations are able to make an

individual diverge sufficiently to skip local maxima. In our case,

we considered the smallest possible mutation as being the change

of one particular cell in the grid to another value. Basically, the

algorithm picks a random cell and sets it to a random value. In our

tests we observed that changing only one cell represents a minor

variation and does not provide enough divergence, so one

mutation consists on more than one change at a time. The number

of changes in each mutation can be tuned, as it is a system

parameter. We also implemented two types of mutation, defined

as Random and Selective Mutation. Random Mutation simple

changes some of the cells in a level, as previously stated. In

Selective Mutation we consider that some cells are more suitable

to be changed. For instance, isolated floor cells are not aesthetic

so they are more suitable to be changed. Also, cells that are not in

the main path and are not accessible by any way are more likely to

be mutated to a wall block. Naturally, other mutations can be

considered as possible ways to improve this operator.

3.5.2 Crossover

Crossover is the operation that blends two (or more) individuals in

a new one, as a mimic to reproduction in real life. This operator

was implemented to cross elements in pairs. Crossing more than

two elements was tested without relevant improvement on the

final results. Due to the level structure, based in cells, a simple

crossing mechanism can consist on constructing each new

individual by taking random cells from another two. However,

cells by themselves do not represent much information and should

be considered in relation to the whole level, in particular, to its

neighborhood. So, we decided to take mainly into account the

more relevant paths that exist in each individual to be crossed,

rather than only the isolated cells. When two levels (individuals)

are crossed, the main path of the first is kept intact, the main path

of the second is also kept intact as long as it does not contradict

the first one and, finally, other cells are chosen randomly from

one or the other individual. A visual representation of the

crossover mechanism is provided in Figure 4 for a small level of 2

by 2 screens. We start by presenting two different levels in the

first row and their corresponding path on the second row. The

third row presents the overlap of both paths. Cells that correspond

to path in both levels are highlighted and, as stated, the attributed

value corresponds to the first individual. In the fourth row we

added the cells that have the same content in both levels to

represent the granted content after the crossover operation is done.

Final row presents a possible result by filling the remaining cells

taking the value randomly from the first or the second individual,

as previously explained. This crossover operator performed better

than the simple random selection of cells previously referred,

which had a very similar behavior to the mutation operator.

Figure 4 – Example of the crossover operation

top row – original levels

second row – corresponding path for both levels

third row – path overlap

fourth row – common cells added

last row – possible final combination

3.6 Level post-processing

We have focused the generation of valid levels by means of

setting the adequate blocks in positions that, in the end, can be

interpreted as the level geometry. As an example, Figure 5

presents a level geometry created in our system. However, there is

more to consider in a level besides its main geometry. In the

particular case of the reference game Prince of Persia, scenarios

have visual complementary elements on the walls such as torches

and windows. This provides aesthetic richness to the scenario.

Also, other gaming entities should complement the scenario to

make a more diverse and complete gameplay, such as enemies

and traps.

These entities are added in a post-processing stage, defined by a

simple set of rules. For instance, in each occurrence of n floor

cells in a row we add an enemy or any particular one-celled trap.

Currently, those traps can be floor spikes and intermittent blades.

As it is possible to see in Figure 6, this final step produces a good

complement to the initial processing phase. This culminates in

something that could be, in fact, one interesting level to play.

Figure 5 – Example of the generated level geometry

(Green door with arrow = Start position; Red door = Goal)

Figure 6 – Example of post processing in one level,

automatically adding gaming entities

Other heuristic rules might be applicable such as adding life

potions in some optional path cells, substituting empty cells with

loose floor if they are adjacent to a floor cell or adding gates and a

respective trigger when a path branching is identified in the graph,

among others.

4. RESULTS
As previously referred, we implemented a system that does the

generation process taking into account the guiding enumerated

principles. To give a better notion we provide a screenshot of the

prototype interface in Figure 7. In this section we will look at the

results that can be achieved with our approach.

Figure 7 – Prototype screenshot

Our prototype is a program that allows the user to individually

configure a set of parameters related to the implemented Genetic

Algorithm, such as number of individuals, number of generations

and probabilities for crossover and mutation. Our main tests

consisted on the following:

 Comparisons on parameter set and theoretical output

quality, based on the fitness function;

 Comparisons on generation time vs. level size;

 Ad-hoc observation of the results and informal

perceptions.

In the first tests, we wanted to understand the differences caused

by changing parameterization in relation to output quality, based

on the fitness function, and the required time to achieve it. The

objective was to perceive the appropriate parameters for further

tests and to extract possible limitations. For this, our tests are

based on changing the population dimension and the number of

generations allowed in the evolution process. A grid of 4 by 5

screens was considered as it represents a reasonable sized level

compared with the original reference game. Our application

computed 20 evolution processes for each considered combination

of population size and number of generations in an Intel Q9300

machine running at 2.5 GHz with 4GB RAM. Table 1 shows the

average computational time for those runs, associated to the

average achieved fitness. Corresponding standard deviations are

also presented. Fitness was normalized to values between zero and

one, considering the whole range of values. Theoretically, the

worse possible level is scored zero and the best level has a score

of one.

Expected trends are extracted directly, such as the increment on

the fitness with the growth on population or number of

generations. Naturally, increasing any of these values results on in

a higher computation time. Within that aspect, the worse

presented case on the table shows a computation time of less than

2 minutes for an average fitness of .93. This represents, in

practice, correct and reliable levels that could be blindly delivered

to the user. Typically, levels with a score over .85 have no

relevant flaws or inconsistent content and present an adequate

challenge. Without compromising the final results, time can be

lowered to less than one minute, resulting in an average fitness of

.92. Finally, considering a computational time of no more than

half a minute, values near .9 are still achievable. Particular large

values besides those on the table were tested as well to verify

scalability. For instance, generation processes were tested with

5000 generations of 500 simultaneous individuals, resulting in

average computation times of approximately 12 minutes.

However, convergence was obtained in the first 2000 generations,

for a fitness value of .99 so, in fact, there was no need of such

computation.

Table 1 – Average fitness and generation time for

number of generations and individuals parameterization and

corresponding standard deviations.

(Time t in seconds; Fitness f in 0 to 1 range)

Generations

Population
200 500 1000 2000

20

individuals

50

individuals

100

individuals

200

individuals

For our second test, we simply wanted to state the speed of the

program and the consequences of generating larger spaces. For

this, we ran a set of tests with fixed parameterizations (1000

generations of 50 individuals) and measured the generation time

against level dimension. Again, a set of 20 tests was computed for

each combination using the same computer. The average measure

time of each level size is presented on Table 2.

Table 2 – Measured processing times for a certain level size and

the corresponding standard deviation.

(Time t in seconds)

Horizontal

Vertical
4 screens 5 screens 6 screens

4 screens

5 screens

6 screens

As previously referred, the fitness function that was defined to

evaluate each level takes into account the study of possible paths

inside it. As path calculation may become particularly complex,

the main objective of this test was to identify possible limitations

and bottle necks. However, computational complexity seems to be

linear with level dimension and no particular limitation in this

aspect was identified. Naturally, a double sized level will not only

result on twice the computational time because more generations

will be needed to achieve an acceptable fitness value, as more

transformations are expected to occur. Still, it is plausible to think

on generating slightly larger spaces without major concerns.

Our final observations are clearly more subjective but are still

important and allow perceiving some important characteristics,

benefits and issues. In Figure 8 we present a set of examples

obtained from our prototype without any particular

parameterization (size was chosen to best fit a column in the

article and generation time is less than a minute). Basically, we

ran the system four consecutive times and those were the obtained

levels without any particular selection, post-processing or tune.

Relevant empiric common sense insights can be stated. A first

impression allows perceiving that outputs are valid game spaces

in their basic structure, which is the main goal of all the work.

Several other outputs were generated and, in the end, we only

came with a few sporadic cases of unrealistic levels, even though

they were all possible to complete. Also, it is particularly

interesting to perceive diversity in the provided examples. The

first level presents a branched path with a maze of tunnels. This

opposes especially the fourth example, where the path is nearly

direct. Movement trend is also different in each case. Last level

focuses mostly on running but, in the third case, there is a strong

emphasis on climbing after an initial long run. Open halls are also

created to serve different visual purposes. In the second level, the

major hall on the left represents a possible big dramatic fall for the

avatar. In the third and fourth examples the halls represent high

ceiled zones. Finally, even the global structure is varied. For

instance, in the second case, practically the last column of screens

could be discarded, as the action takes place on the rest of the

game space. In the last two cases, the top row screens are the ones

that could be possibly discarded without any particular impact on

gameplay or level appearance.

All these aspects allow us to perceive that this method represents

an interesting way to provide different, varied and playable

platform levels.

5. CONCLUSIONS AND FUTURE WORK

In this document we presented our study on the automatic

generation of game spaces for platform videogames with the

usage of Genetic Algorithms. Our main objective of proving this

as a potential alternative for the generation of game spaces for

platform levels was successful. Our results are levels that are valid

and that could be exported to an engine and played. The implicit

rules forced by the calculations in the fitness function makes the

process to converge, at least, to a physically valid level in a matter

of seconds. Considering a processing time of not more than a

couple of minutes the outputs are not only valid levels but have

also a balanced structure representing a good challenge.

Comparing to the existing techniques for similar purposes, the

presented approach brings advantages concerning level variety.

Existing alternatives, presented in Section 2, focuses side scrolling

action, typically from left to right. In our levels, the solution is not

straight and sometimes not even unique, which allows usage in

other variants of platform gaming. Still, simple side scrolling

action levels can be achieved with proper parameterization. In

addition, the graph structure allows level complementation. For

instance, optional path zones may have bonus entities that the

character may gather.

In order to make more effective tests to the produced levels and

extract several user related aspects, a simple game prototype is

planned for further developments. This will allow retrieving

users’ opinions as well as gameplay metrics that may tweak the

generation process as a feedback system.

Figure 8 – Example of generated levels

We verified fast convergence to valid solutions with no particular

flaws that would render a level unsuitable to be blindly provided

to a user. Still, this fast convergence represents the algorithm

going in the direction of a local maximum. For the main purposes

of the created system, which is the fast generation (similar to

videogame loading time) of a possible level to be immediately

played, it does not represent a problem. The system focuses in one

direction and finds a good solution based on that.

Some of the presented tests focused performance, namely to

extract generation time under certain conditions. Even though it is

possible to achieve interesting results in short times, the obtained

levels with more computation time showed better features in

individual details. One possible aspect to consider in the future to

improve the obtained generation times is the usage of parallel

computing, which is not new on Genetic Algorithms. In fact,

effective implementations already exist, such as the Parallel

Genetic Algorithm Library (http://sourceforge.net/projects/pgal/)

available at the Source Forge community.

Likewise, one aspect to consider in the future, even though it does

not provide direct improvement on the results, is to expand the set

of objects in the system. We plan to add other gaming entities

available in Prince of Persia, such as lose floors, opening and

closing gates, among others. However, this is envisioned to be a

post-processing step, such as the presented case of the already

considered additional gaming entities. Controlling this process

may also allow adjusting the level difficulty within a certain

range, by adding more or less entities. Naturally, it is also

important to verify that the added entities do not invalidate the

level. For this, simple concepts may be applied. For instance, any

empty cell where the user is supposed to fall may be transformed

in a loose floor. As another example, when the path splits in two,

this post-processing step may create a closed gate in one branch

and a switch to open it in the other one.

In the same manner, more aesthetic items can be considered, such

as torches, windows, hanging rugs, among others. To give

practical use to the presented work, and since the system is able to

generate levels that could be played, it is planned to set a way for

those levels to be effectively played. One possible way is to

export the outputs to the original Prince of Persia format. This

alternative is possible and there are even communities where the

original game is customized with user levels, sprites, etc. For

instance, the Princed Project community provides several tools

for the process (http://www.princed.org/).

Finally, it is important to refer that improvements can always be

achieved in the future by doing optimization in the Genetic

Algorithm itself, with additional parameter tuning and by adapting

employed evolution techniques, namely the fitness function and

mutation and crossover operators. We also intend to tackle these

aspects in the near future gathering additional experts knowledge.

6. ACKNOWLEDGEMENT
This work was partially funded by Instituto Politécnico de Setúbal

under FCT/MCTES grant SFRH/PROTEC/67497/2010 and CITI

under FCT/MCTES grant PEst-OE/EEI/UI0527/2011.

7. REFERENCES
[1] Compton, K., Mateas, M. 2006. Procedural level design for

platform games, In Proceedings of the Artificial Intelligence

and Interactive Digital Entertainment International

Conference (AIIDE).

[2] Csikszentmihaly, M. 1991. Flow: The Psychology of

Optimal Experience. Harper Collins, NY.

[3] Goldberg, D. 1989. Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-Wesley.

[4] Holland, J. 1975. Adaptation in Natural and Artificial

Systems, Ann Arbor, University of Michigan Press.

[5] Lord, K., Brown, R. 2005. Using genetic algorithms to

optimise triangle strips. In Proceedings of the 3rd

international conference on Computer graphics and

interactive techniques in Australasia and South East Asia

(GRAPHITE '05). ACM, New York, NY, USA, 169-176.

[6] Lipp, M., Wonka, P.,Wimmer, M. 2008. Interactive visual

editing of grammars for procedural architecture. ACM Trans.

Graph. 27, 3, Article 102 (August 2008).

[7] Mandelbrot B., Hudson R. 1982. The Fractal Geometry of

Nature. W. H. Freeman and Company, New York.

[8] Mawhorter, P., Mateas, M. 2010. Procedural Level

Generation Using Occupancy-Regulated Extension. CIG-

2010 - IEEE Conference on Computational Intelligence and

Games.

[9] Mourato, F., Próspero dos Santos, M. 2010. Measuring

Difficulty in Platform Games. Interacção 2010 – 4ª

Conferência Nacional em Interacção Humano-Computador.

[10] Pedersen, C., Togelius, J., Yannakakis, G. 2009. Modeling

player experience in super mario bros. In Proceedings of the

5th international conference on Computational Intelligence

and Games (CIG'09). IEEE Press, Piscataway, NJ, USA,

132-139.

[11] Savchenko, V., Schmitt, L. 2001. Reconstructing occlusal

surfaces of teeth using a genetic algorithm with simulated

annealing type selection. In Proceedings of the 6th ACM

symposium on solid modeling and applications (SMA '01),

David C. Anderson (Ed.). ACM, NY, USA, 39-46.

[12] Smith, G., Cha, M., Whitehead, J. 2008. A Framework for

Analysis of 2D Platformer Levels, In Proceedings of the

2008 ACM SIGGRAPH symposium on video games, pp. 75-

80.

[13] Smith, G., Mateas, M., Whitehead, J.,Treanor, M. 2009.

Rhythm-based level generation for 2D platformers, In

Proceedings of the 4th International Conference on

Foundations of Digital Game.

[14] Smith, G., Whitehead, J. 2010. Analyzing the Expressive

Range of a Level Generator. In Proceedings of the Workshop

on PCG in Games, Monterey, CA, June 18, 2010.

[15] Smith, G., Whitehead, J., Mateas, M. 2010. Tanagra: A

Mixed-Initiative Level Design Tool. In Proceedings of the

2010 International Conference on the Foundations of Digital

Games (FDG 2010), Monterey, CA, June 19-21.

[16] Togelius, J., Yannakakis, G., Stanley, K., Browne, C. 2010.

Search-based procedural content generation. In Proceedings

of the European Conference on Applications of EC

(EvoApplications), volume 6024. Springer LNCS.

[17] Togelius, J., Schmidhuber. J. 2008. An experiment in

automatic game design. In Proceedings of the IEEE

Symposium on Computational Intelligence and Games.

[18] Zagal, J., Mateas, M., Fernandez-Vara, C., Hochhalter, B.

Lichti, N. 2005. Towards an Ontological Language for Game

Analysis, In Proceedings of the Digital Interactive Games

Research Association Conference (DiGRA 2005), Vancouver

B.C., June, 2005

http://sourceforge.net/projects/pgal/
http://www.princed.org/

	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	3.1 Main principles and motivation
	3.2 Genetic Algorithms overview
	3.3 Level Representation
	3.4 Fitness Function
	3.5 Genetic Operators
	3.5.1 Mutation
	3.5.2 Crossover

	3.6 Level post-processing

	4. RESULTS
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGEMENT
	7. REFERENCES

