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ABSTRACT 

In this document we present an investigation on automatically 

generating levels for platform videogames. Common approaches 

for this problem are rhythm based, where input patterns are 

transformed in a valid geometry, and chunk based, where samples 

are humanly created and automatically assembled like a puzzle. 

The proposal hereby presented is to explore this challenge with 

the usage of Genetic Algorithms, facing it as a search problem, in 

order to achieve higher expressivity and less linearity than in 

rhythm based approach and without requiring human creation as it 

happens with the chunk based approach. With simple heuristics 

the system is able to generate playable levels in a small amount of 

time (one level is created in less than a minute) and with 

considerable diversity, as our results show. 

Categories and Subject Descriptors 

I.3.5 [Computer Graphics]: Geometric Algorithms, Languages, 

and Systems, I.3.6 [Computer Graphics]: Interaction 

Techniques. 

General Terms 

Algorithms, Design, Experimentation, Human Factors. 

Keywords 

Platform Videogames, Procedural Content Generation, Automated 

Game Design. 

1. INTRODUCTION 
The automatic generation of content is an area of interest for 

scientists from different domains in Computer Science, such as 

Computer Graphics, Artificial Intelligence, Human-Computer 

Interaction, among others. In this paper we direct our focus to the 

automated generation of content for platform videogames. In 

particular, our goal is to have a system that is able to 

automatically generate levels for this type of games. 

Platform games, such as Super Mario Bros. and Sonic – the 

Hedgehog, represent one particular genre of gaming where the 

user controls a character and guides him through a scenario, 

performing jumps over gaps and confronting opponents, typically 

in a bi-dimensional environment. This type of games was 

particular popular in the 1980’s. However, and maybe due to the 

excessive complexity of contemporary games, platformers are 

starting to appear once again in recent videogame releases, either 

as remakes with improved graphics or as new ideas taking 

advantage of contemporary technology such as the wide spread of 

the Internet. For instance, Nintendo released New Super Mario 

Bros Wii in 2009 and Sega released Sonic 4 in 2010. In addition, 

the videogame Little Big Planet is a good example of a modern 

platformer. 

In this article we focus the problem of automatically generating 

levels for this type of games, with a different approach from those 

that have been used up to the present time. As we will further see 

in Section 2 of this document, where related work is presented, 

some alternatives have been considered for this purpose, such as 

rhythm and chunk based. We present the possibility of 

approaching this challenge as a search problem, tackling it with 

the usage of Genetic Algorithms. The main contribution of this 

project is the approach by itself inside this context, which is new 

and promissory. Associated to that, we also bring the definition of 

heuristics to measure the quality of a level based on the 

geometrical content and interaction parameters. Finally, the 

implemented prototype provides a proof of feasibility of this 

approach. 

Automatically generating this type of game spaces is an 

interesting challenge, in particular because it appears to be a 

simple task, although, it raises several issues and non-trivial 

aspects to be addressed. Though in its main principles it can be 

perceived as generating a generic geometry, such as what happens 

when a system procedurally generates a tree or a building, for 

instance, one has to take into account that the final geometry has 

to represent a challenge, associated to a certain degree of 

difficulty. Also, this type of geometric content is semantically 

sensitive, since a slight change in a small component may 

invalidate the whole content. For instance, a minor random 

change in a valid level can be enough to make it impossible to 

complete. 

Procedural Content Generation can be used in different ways. For 

small companies and independent developers, this may represent a 

solution for the time consuming task of producing game content. 

More generally, the main potential is in the possibility of creating 

an uncountable set of levels, which solves the problem of level 

predictability. For instance, it becomes impossible to go online for 

the level solution and/or secret locations. Finally, this approach 

creates room for designers to conceive new mechanics that adapt 

gameplay to fit competitiveness in ever-changing scenarios. 
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For the purpose of this project, the main inspiration can be found 

in a classical platform videogame released in 1989, entitled Prince 

of Persia (screenshot provided in Figure 1). This game became a 

franchise with several associated releases in the last decade with 

contemporary graphical realism and gameplay, out of the initial 

platform based approach. Regarding the original game, levels 

typically consist of dungeons with corridors, filled with traps and 

gaps. Also, the character occasionally encounters and confronts 

enemies. In this particular game, movement challenges such as 

jumping through gaps and enemy confrontations are kept separate, 

meaning that the player will not be simultaneously moving and 

fighting. In Section 3 of this document we will go into the details 

about the generation process and we will explain the main reason 

of having Prince of Persia as the main inspiration. Nevertheless, it 

is important to state that the technique is not restricted to this 

particular game only. We believe that some of the ideas that will 

be presented can be generalized and used in other platform 

videogames.  

 

Figure 1 – Screenshot of the videogame Prince of Persia 

Even though this work has some aspects in a preliminary stage, 

our results are promissory as we will see in Section 4. This 

approach generates several distinct valid levels. A fast generation 

process of not more than a few seconds provides, with almost 

100% certainty, a valid level with a couple of minutes of 

gameplay. Rising the computation times to one or two minutes 

allow to perfect the generation process with particular good detail. 

2. RELATED WORK 
Procedurally generating game spaces is a topic that informally 

appeared, in a videogame entitled Rogue, back in 1980. The game 

was ASCII based and its geometry was defined recurring to 

simple characters. The idea behind the procedural generation was 

simple: rooms were generated with random positions and sizes 

and were interconnected by corridors also randomly created. 

Despite the popularity this game achieved - Version 4.2 of BSD 

UNIX included Rogue – the approach behind it got unnoticed. 

Interestingly, this topic became popular in recent times, as a way 

to improve “replayability” in games. Regarding independent game 

development, two recent titles are worth mentioning: Minecraft 

and Spelunky. Both have game environments that are procedurally 

generated. In the scientific community, this topic has also been 

approached as we will further see. 

Generating graphical entities, such as buildings, is a problem that 

has been actively approached. As an example, Lipp [6] uses  

L-Systems as an efficient way to automatically generate buildings 

with the possibility of small scale control. Considering nature, the 

examples are numerous, and mature cases can be found back in 

Mandelbrot and Hudson’s ideas to generate terrain procedurally, 

for instance, the mid-point displacement technique [7]. However, 

ideas such as these are recent in the generation of game spaces. 

The interest behind the topic of automating the generation of 

levels for platform games was pioneered by Compton and Mateas 

[1]. They proposed some principles that could be used to interpret 

and describe platform levels, suitable for an automatic generation 

system. Concerning to movement, authors have defined a model 

with different possible patterns: basic, complex, compound and 

composite. These patterns represent the organization of a level in 

components, which are the platforms and other graphical entities 

that compose a level. They have also presented some ideas about 

the need of having a physics model to perceive possible 

trajectories to identify difficulty, but only as a theoretical need 

without effective concretization.  

Later, Smith et al. [12] presented a more extensive analysis to the 

existing components of a platform level, with the creation of a 

conceptual model that defines associations and a hierarchy for the 

different entities. The used principles follow some of the thoughts 

proposed in the Game Ontology Project (GOP) by Zegal et al. 

[18], where a more generic model was proposed. The defined 

hierarchy by Smith et al. represents an interesting approach to the 

problem and largely covers the concepts. 

The previous work led to the creation of a system that effectively 

generates levels for platform games [13]. This system was later 

named Launchpad. The main idea is that the generation of level 

segments can be based in input patterns that the player needs to 

match. Therefore, when the player is performing well, the 

sequence of actions flows naturally, like playing a melody in a 

piano, following the principle of Flow proposed by 

Csikszentmihalyi [2], which represents the ideal state of 

immersion and control over a certain skill based task. We can 

consider this type of level generation as the rhythm based 

approach. 

In order to evaluate the expressive range of the previous work, the 

same authors proposed a method to analyse the generated content 

[14]. One important aspect that should be retained is that it is not 

only important to examine the number of different levels that are 

generated and the time needed for their creation, but also to 

extract how different and varied the results are. Authors analysed 

the output regarding linearity of the path and the relative difficulty 

measurement. 

Still taking into account the concept of expressivity, the more 

natural way to expand it and add creativity is to include a user or a 

set of users tweaking the output or the process of production. This 

approach is referred as a mixed-initiative, which means that the 

final result is obtained after a cooperative effort of humans and 

machines. Smith et al. [15] presented a prototype system for this 

purpose using constraint programming. 

Finally, Mawhorter and Mateas [8] presented a different approach 

to level generation. They introduced Occupancy Regulated 

Extension (ORE), an algorithm to create a game space based on 

the composition of pre-authored chunks. One of the main 

inspirations behind this work is the previously referred game 

Spelunky. This different idea can be seen as chunk based 

approach. 

Our proposal is an alternative to the generation process, with a 

novel approach based on Genetic Algorithms, a class of 

Evolutionary Computation techniques that mimics real life 

evolution. It is based on natural selection and is commonly used in 

search problems with exponential growth that leads to the 



impossibility of testing all potential solutions. To a more in-deep 

study about Genetic Algorithms we point to Holland [4] and 

Goldberg’s [3] books. The usage of these principles in Computer 

Graphics and Interaction is not new, and has served various 

purposes. For instance, to point a few, they have been used for the 

reconstruction of missing parts of a real geometric object 

represented by volume data, as proposed by Savchenko and 

Schmitt [11], and to tune the parameters of an existing triangle 

stripping algorithm, as proposed by Lord and Brown [5]. 

However, Genetic Algorithms have not been used as a tool for 

game content generation in the way we propose, in particular a 

game level that presents an associate challenge rather than a 

simple physically valid environment.  

The most similar approaches to what we propose and that have 

been considered to generate game content can be found compiled 

in Togelius et al. study on Search-based Procedural Content 

Generation [16]. This article presents a good overview about 

possible alternatives and important considerations in the topic that 

were particularly relevant in the definition of our system. In 

addition, the authors refer two other interesting works to be 

considered in the scope of this document.  

The first work shows one possible usage for Genetic Algorithms 

in the context of Game Content Generation, proposed by Togelius 

and Schmidhuber [17]. The authors presented a system that 

evolves rule sets for Pacman-like games, converging to alternative 

game variants.  

The second example, proposed by Padersen et al. [10] shows a 

level generation for platform videogames. A simple and linear 

game is constructed randomly based on a small set of parameters, 

such as the average gap size. This simple construction process 

was used in a system where the main goal is to predict user 

emotional state based on the referred parameters. That prediction 

is accomplished with the usage of neural networks based on the 

user profile.  

Next, in Section 3, we will present our approach and justify our 

option of testing Genetic Algorithms as a possible way to generate 

the level, particularly in comparison with other techniques for 

search problems. 

3. APPROACH 

3.1 Main principles and motivation 

As previously referred, the generation process was created 

focusing, in particular, the videogame Prince of Persia. However, 

we believe that, with proper changes, a similar approach can be 

used for a generic platform game. The most significant aspect that 

guided that inspiration is that this game, like many others, has 

areas represented in a grid. Essentially, each level is composed by 

cells, grouped in screens of 10 by 3 cells, as it is possible to see in 

the screenshot provided in Figure 2, where cells have been 

delimited.  

This structure based on cells allows us to think about two main 

aspects. First, it is theoretically possible to generate all 

conceivable levels for this game by generating all possible 

combination of cells. Secondly, it is plausible to construct a 

system that can test a generated level regarding movement (and 

possibly some more aspects) and reasonably perceive its quality. 

Consequently, the main issue is that, in practice, it is not possible 

to test all conceivable levels. A simple screen where, to make it 

simple, cells have only three possibilities (empty, wall block and 

simple floor, as show in the images of Figure 3) consists of 310*3 

combinations and, as a matter of fact, one single screen is not 

much of a level. With this in mind, a stochastic solution appears to 

be plausible as a way to tackle the problem. In one hand, it would 

provide different results in different runs and, in the other hand, it 

provides an adequate sampling on all possible solutions without 

testing them all. Inside stochastic algorithms and techniques, the 

usage of Genetic Algorithms appeared as an interesting solution 

because this is a case where it is not trivial to define an operator to 

explore alternative solutions. There is no direct perceptible 

relationship among levels to be represented in a tree as it is 

complex to define a set of successors for a particular level. Also, 

the previously referred cell based representation for levels can be 

mapped with some ease in a structure that can be used with 

genetic operators, as we will see next.    

 

Figure 2 – Prince of Persia – Division in Grid 

 

 

Figure 3 – Three simple blocks that allow the  

construction of one simple valid level 

3.2 Genetic Algorithms overview 

As stated before, Genetic Algorithms mimic real life evolution, in 

particular based on Darwin’s theory of Natural Selection. In short 

terms, this theory states that living beings that fit best their 

environment are more willing to survive and reproduce. 

Consequently, their features are reinforced in future generations. 

Features change over time due to natural mutations and mutual 

heritance.   

In a Genetic Algorithm, one represents Individuals, coded with 

certain data (genotype) that will manifest some effective features 

(phenotype), in the same way it happens in nature. To represent 

evolution, the system has to be able to perceive the inherent 

quality of each individual. Genetic Algorithms simulate the 

process of evolution by sorting a set of individuals (a generation) 

and making the most scored more whiling to continue to the next 

generation. For this purpose, a Fitness Function is defined to 

evaluate an individual with a certain score. In addition, after a 

new generation is defined, according to some probability 

parameters, mutations are applied and some individuals are 

combined among themselves. 



In the next sub-sections we present a possible level representation, 

a corresponding fitness function and crossover and mutation 

operators.  

3.3 Level Representation 

In this system, an Individual is one possible level representation. 

For this, we adopted a direct genotype/phenotype mapping, which 

means that coded information represents features directly. 

Effectively, the implemented genotype represents the whole grid, 

cell by cell, in a bi-dimensional array. Also, the genotype has 

explicit representations for the starting and ending cell of the 

level. The main advantages of this mapping are locality, because it 

will be possible to perform small changes in a level, and 

representability, as all solutions have a matching representation. 

The main disadvantage that can be pointed is that this is the most 

expensive mapping alternative in what concerns to storage. 

However, considering the original game and spending one byte 

for each cell, even a large level is still representable with a few 

kilobytes, which surely does not represent an issue. 

3.4 Fitness Function 

To calculate the fitness value for each level, we established a set 

of heuristics to represent what a possible human evaluation would 

ponder. The main considered aspects were the following: 

 Path Structure. The level has to represent a good and 

immersive path. In particular, it is important to have 

alternative routes to avoid excessive path linearity, 

which could result in single closed corridors. Also, it is 

important to prevent excessive path branching, resulting 

in a complex maze. To accomplish this, a set of possible 

moves is defined and access to all cells is calculated, 

such as moving to adjacent floor cell or jumping 

through a gap with no more than four cells, among 

others. In addition, a graph is created, thus it is possible 

to perceive the cost (i.e. the number of movements 

needed) to reach any cell from the starting position. This 

gives a brief perception about the level difficulty. To 

achieve a more detailed evaluation one needs a more 

complex alternative. In a previous work [9], we 

proposed a framework to measure difficulty based on 

level structure and gap features, which can be an 

alternative for this purpose. The main issue that this 

may cause is an increase of complexity for the fitness 

function, which will result in higher computation times 

to produce one valid level. 

 Individual cells analysis. Each cell has a particular 

meaning and is analyzed individually. The system 

defines good and bad cells as they make sense or not in 

the level. A wall cell is always valid. A floor cell is only 

valid if it is part of any of the possible paths. Finally, an 

empty cell can be valid if it is used as path (for instance, 

to create a gap to jump over) or if it has aesthetic 

purposes. For the last, we defined that an empty cell has 

aesthetic purpose if it has a valid empty cell in the 

neighborhood. This specific aspect allows the system to 

construct levels with open rooms instead of only closed 

corridors. 

 Ending. The placement of the level ending cell has to 

assure, at first, that the level is valid and, secondly, that 

an interesting challenge was created, consisting on an 

acceptable cost (i.e. a high percentage of the maximum 

identified cost). Starting position was not considered 

because it already has implications on path structure. 

 Aesthetic balance. To keep the generation with some 

visual balance, the usage of each particular block should 

be similar, meaning that the number of used blocks of 

each type should be about the same. As we stated on 

individual cell analysis, a wall block is always valid, so 

this balance forces the evolution process to avoid an 

excessive use of this type of blocks. 

 Level usage. The level is supposed to take good use of 

the provided space, by the means that the full path 

length should be proportional to the number of cells. 

This specific aspect reinforces the aesthetic balance, as 

it favors the definition of long paths, strengthens the 

definition of a good ending point and supports low 

branched paths. 

These heuristics were applied independently from each other to 

extract a specific score. To keep control over the range of values, 

every obtained score is set between zero and one. The extracted 

individual scores are weighted according to a set of parameters to 

generate the final fitness value, also normalized to a value 

between zero and one. 

3.5 Genetic Operators 

As stated, genetic operators typically consist on mutation and 

crossover. This sub-section covers the basis of their 

implementation in our system. 

3.5.1 Mutation 

Mutation occurs with a certain probability and can be applied in 

many forms. It is important that mutations are able to make an 

individual diverge sufficiently to skip local maxima. In our case, 

we considered the smallest possible mutation as being the change 

of one particular cell in the grid to another value. Basically, the 

algorithm picks a random cell and sets it to a random value. In our 

tests we observed that changing only one cell represents a minor 

variation and does not provide enough divergence, so one 

mutation consists on more than one change at a time. The number 

of changes in each mutation can be tuned, as it is a system 

parameter. We also implemented two types of mutation, defined 

as Random and Selective Mutation. Random Mutation simple 

changes some of the cells in a level, as previously stated. In 

Selective Mutation we consider that some cells are more suitable 

to be changed. For instance, isolated floor cells are not aesthetic 

so they are more suitable to be changed. Also, cells that are not in 

the main path and are not accessible by any way are more likely to 

be mutated to a wall block. Naturally, other mutations can be 

considered as possible ways to improve this operator. 

3.5.2 Crossover 

Crossover is the operation that blends two (or more) individuals in 

a new one, as a mimic to reproduction in real life. This operator 

was implemented to cross elements in pairs. Crossing more than 

two elements was tested without relevant improvement on the 

final results. Due to the level structure, based in cells, a simple 

crossing mechanism can consist on constructing each new 

individual by taking random cells from another two. However, 

cells by themselves do not represent much information and should 



be considered in relation to the whole level, in particular, to its 

neighborhood. So, we decided to take mainly into account the 

more relevant paths that exist in each individual to be crossed, 

rather than only the isolated cells. When two levels (individuals) 

are crossed, the main path of the first is kept intact, the main path 

of the second is also kept intact as long as it does not contradict 

the first one and, finally, other cells are chosen randomly from 

one or the other individual. A visual representation of the 

crossover mechanism is provided in Figure 4 for a small level of 2 

by 2 screens. We start by presenting two different levels in the 

first row and their corresponding path on the second row. The 

third row presents the overlap of both paths. Cells that correspond 

to path in both levels are highlighted and, as stated, the attributed 

value corresponds to the first individual. In the fourth row we 

added the cells that have the same content in both levels to 

represent the granted content after the crossover operation is done. 

Final row presents a possible result by filling the remaining cells 

taking the value randomly from the first or the second individual, 

as previously explained. This crossover operator performed better 

than the simple random selection of cells previously referred, 

which had a very similar behavior to the mutation operator. 

 

Figure 4 – Example of the crossover operation 

top row – original levels 

second row – corresponding path for both levels 

third row – path overlap 

fourth row – common cells added 

last row – possible final combination 

3.6 Level post-processing 

We have focused the generation of valid levels by means of 

setting the adequate blocks in positions that, in the end, can be 

interpreted as the level geometry. As an example, Figure 5 

presents a level geometry created in our system. However, there is 

more to consider in a level besides its main geometry. In the 

particular case of the reference game Prince of Persia, scenarios 

have visual complementary elements on the walls such as torches 

and windows. This provides aesthetic richness to the scenario. 

Also, other gaming entities should complement the scenario to 

make a more diverse and complete gameplay, such as enemies 

and traps. 

These entities are added in a post-processing stage, defined by a 

simple set of rules. For instance, in each occurrence of n floor 

cells in a row we add an enemy or any particular one-celled trap. 

Currently, those traps can be floor spikes and intermittent blades. 

As it is possible to see in Figure 6, this final step produces a good 

complement to the initial processing phase. This culminates in 

something that could be, in fact, one interesting level to play. 

 

Figure 5 – Example of the generated level geometry 

(Green door with arrow = Start position; Red door = Goal) 

 

 

Figure 6 – Example of post processing in one level, 

automatically adding gaming entities 

Other heuristic rules might be applicable such as adding life 

potions in some optional path cells, substituting empty cells with 

loose floor if they are adjacent to a floor cell or adding gates and a 

respective trigger when a path branching is identified in the graph, 

among others. 

4. RESULTS 
As previously referred, we implemented a system that does the 

generation process taking into account the guiding enumerated 

principles. To give a better notion we provide a screenshot of the 

prototype interface in Figure 7. In this section we will look at the 

results that can be achieved with our approach.  



 

Figure 7 – Prototype screenshot 

Our prototype is a program that allows the user to individually 

configure a set of parameters related to the implemented Genetic 

Algorithm, such as number of individuals, number of generations 

and probabilities for crossover and mutation. Our main tests 

consisted on the following: 

 Comparisons on parameter set and theoretical output 

quality, based on the fitness function; 

 Comparisons on generation time vs. level size; 

 Ad-hoc observation of the results and informal 

perceptions. 

In the first tests, we wanted to understand the differences caused 

by changing parameterization in relation to output quality, based 

on the fitness function, and the required time to achieve it. The 

objective was to perceive the appropriate parameters for further 

tests and to extract possible limitations. For this, our tests are 

based on changing the population dimension and the number of 

generations allowed in the evolution process. A grid of 4 by 5 

screens was considered as it represents a reasonable sized level 

compared with the original reference game. Our application 

computed 20 evolution processes for each considered combination 

of population size and number of generations in an Intel Q9300 

machine running at 2.5 GHz with 4GB RAM. Table 1 shows the 

average computational time for those runs, associated to the 

average achieved fitness. Corresponding standard deviations are 

also presented. Fitness was normalized to values between zero and 

one, considering the whole range of values. Theoretically, the 

worse possible level is scored zero and the best level has a score 

of one. 

Expected trends are extracted directly, such as the increment on 

the fitness with the growth on population or number of 

generations. Naturally, increasing any of these values results on in 

a higher computation time. Within that aspect, the worse 

presented case on the table shows a computation time of less than 

2 minutes for an average fitness of .93. This represents, in 

practice, correct and reliable levels that could be blindly delivered 

to the user. Typically, levels with a score over .85 have no 

relevant flaws or inconsistent content and present an adequate 

challenge. Without compromising the final results, time can be 

lowered to less than one minute, resulting in an average fitness of 

.92. Finally, considering a computational time of no more than 

half a minute, values near .9 are still achievable. Particular large 

values besides those on the table were tested as well to verify 

scalability. For instance, generation processes were tested with 

5000 generations of 500 simultaneous individuals, resulting in 

average computation times of approximately 12 minutes. 

However, convergence was obtained in the first 2000 generations, 

for a fitness value of .99 so, in fact, there was no need of such 

computation. 

Table 1 – Average fitness and generation time for  

number of generations and individuals parameterization and 

corresponding standard deviations.  

(Time t in seconds; Fitness f in 0 to 1 range) 

Generations 

Population 
200 500 1000 2000 

20 

individuals 

       
       
        

        

       

       
        

        

       

       
        

        

      

       
        

        

50 

individuals 

       

       
        

        

       

       
        

        

      

       
        

        

      

      
        

        

100 

individuals 

       

     
        

        

       

       
        

        

      

       
        

        

      

        
        

        

200 

individuals 

       

     
        

        

      

      
        

        

      

      
        

        

       

      
        

        

 

For our second test, we simply wanted to state the speed of the 

program and the consequences of generating larger spaces. For 

this, we ran a set of tests with fixed parameterizations (1000 

generations of 50 individuals) and measured the generation time 

against level dimension. Again, a set of 20 tests was computed for 

each combination using the same computer. The average measure 

time of each level size is presented on Table 2.  

Table 2 – Measured processing times for a certain level size and 

the corresponding standard deviation. 

(Time t in seconds)  

Horizontal 

Vertical 
4 screens 5 screens 6 screens 

4 screens 
      

       

        

       

        

       

5 screens 
        

       

        

       

        

       

6 screens 
        

       

        

       

        

       

 

As previously referred, the fitness function that was defined to 

evaluate each level takes into account the study of possible paths 

inside it. As path calculation may become particularly complex, 

the main objective of this test was to identify possible limitations 

and bottle necks. However, computational complexity seems to be 

linear with level dimension and no particular limitation in this 

aspect was identified. Naturally, a double sized level will not only 

result on twice the computational time because more generations 

will be needed to achieve an acceptable fitness value, as more 

transformations are expected to occur. Still, it is plausible to think 

on generating slightly larger spaces without major concerns.  



Our final observations are clearly more subjective but are still 

important and allow perceiving some important characteristics, 

benefits and issues. In Figure 8 we present a set of examples 

obtained from our prototype without any particular 

parameterization (size was chosen to best fit a column in the 

article and generation time is less than a minute). Basically, we 

ran the system four consecutive times and those were the obtained 

levels without any particular selection, post-processing or tune. 

Relevant empiric common sense insights can be stated. A first 

impression allows perceiving that outputs are valid game spaces 

in their basic structure, which is the main goal of all the work. 

Several other outputs were generated and, in the end, we only 

came with a few sporadic cases of unrealistic levels, even though 

they were all possible to complete. Also, it is particularly 

interesting to perceive diversity in the provided examples. The 

first level presents a branched path with a maze of tunnels. This 

opposes especially the fourth example, where the path is nearly 

direct. Movement trend is also different in each case. Last level 

focuses mostly on running but, in the third case, there is a strong 

emphasis on climbing after an initial long run. Open halls are also 

created to serve different visual purposes. In the second level, the 

major hall on the left represents a possible big dramatic fall for the 

avatar. In the third and fourth examples the halls represent high 

ceiled zones. Finally, even the global structure is varied. For 

instance, in the second case, practically the last column of screens 

could be discarded, as the action takes place on the rest of the 

game space. In the last two cases, the top row screens are the ones 

that could be possibly discarded without any particular impact on 

gameplay or level appearance.  

All these aspects allow us to perceive that this method represents 

an interesting way to provide different, varied and playable 

platform levels. 

5. CONCLUSIONS AND FUTURE WORK 

In this document we presented our study on the automatic 

generation of game spaces for platform videogames with the 

usage of Genetic Algorithms. Our main objective of proving this 

as a potential alternative for the generation of game spaces for 

platform levels was successful. Our results are levels that are valid 

and that could be exported to an engine and played. The implicit 

rules forced by the calculations in the fitness function makes the 

process to converge, at least, to a physically valid level in a matter 

of seconds. Considering a processing time of not more than a 

couple of minutes the outputs are not only valid levels but have 

also a balanced structure representing a good challenge.  

Comparing to the existing techniques for similar purposes, the 

presented approach brings advantages concerning level variety. 

Existing alternatives, presented in Section 2, focuses side scrolling 

action, typically from left to right. In our levels, the solution is not 

straight and sometimes not even unique, which allows usage in 

other variants of platform gaming. Still, simple side scrolling 

action levels can be achieved with proper parameterization. In 

addition, the graph structure allows level complementation. For 

instance, optional path zones may have bonus entities that the 

character may gather.   

In order to make more effective tests to the produced levels and 

extract several user related aspects, a simple game prototype is 

planned for further developments. This will allow retrieving 

users’ opinions as well as gameplay metrics that may tweak the 

generation process as a feedback system. 

 
 

 
 

 
 

 

Figure 8 – Example of generated levels 



We verified fast convergence to valid solutions with no particular 

flaws that would render a level unsuitable to be blindly provided 

to a user. Still, this fast convergence represents the algorithm 

going in the direction of a local maximum. For the main purposes 

of the created system, which is the fast generation (similar to 

videogame loading time) of a possible level to be immediately 

played, it does not represent a problem. The system focuses in one 

direction and finds a good solution based on that. 

Some of the presented tests focused performance, namely to 

extract generation time under certain conditions. Even though it is 

possible to achieve interesting results in short times, the obtained 

levels with more computation time showed better features in 

individual details. One possible aspect to consider in the future to 

improve the obtained generation times is the usage of parallel 

computing, which is not new on Genetic Algorithms. In fact, 

effective implementations already exist, such as the Parallel 

Genetic Algorithm Library (http://sourceforge.net/projects/pgal/) 

available at the Source Forge community. 

Likewise, one aspect to consider in the future, even though it does 

not provide direct improvement on the results, is to expand the set 

of objects in the system. We plan to add other gaming entities 

available in Prince of Persia, such as lose floors, opening and 

closing gates, among others. However, this is envisioned to be a 

post-processing step, such as the presented case of the already 

considered additional gaming entities. Controlling this process 

may also allow adjusting the level difficulty within a certain 

range, by adding more or less entities. Naturally, it is also 

important to verify that the added entities do not invalidate the 

level. For this, simple concepts may be applied. For instance, any 

empty cell where the user is supposed to fall may be transformed 

in a loose floor. As another example, when the path splits in two, 

this post-processing step may create a closed gate in one branch 

and a switch to open it in the other one. 

In the same manner, more aesthetic items can be considered, such 

as torches, windows, hanging rugs, among others. To give 

practical use to the presented work, and since the system is able to 

generate levels that could be played, it is planned to set a way for 

those levels to be effectively played. One possible way is to 

export the outputs to the original Prince of Persia format. This 

alternative is possible and there are even communities where the 

original game is customized with user levels, sprites, etc. For 

instance, the Princed Project community provides several tools 

for the process (http://www.princed.org/). 

Finally, it is important to refer that improvements can always be 

achieved in the future by doing optimization in the Genetic 

Algorithm itself, with additional parameter tuning and by adapting 

employed evolution techniques, namely the fitness function and 

mutation and crossover operators. We also intend to tackle these 

aspects in the near future gathering additional experts knowledge. 
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